
Journal of Computational Physics148,2–22 (1999)

Article ID jcph.1998.6090, available online at http://www.idealibrary.com on

The Fast Construction of Extension Velocities
in Level Set Methods

D. Adalsteinsson and J. A. Sethian1

Department of Mathematics and Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720

E-mail: sethian@math.berkeley.edu

Received December 22, 1997; revised July 30, 1998

Level set techniques are numerical techniques for tracking the evolution of inter-
faces. They rely on two central embeddings; first, the embedding of the interface as
the zero level set of a higher dimensional function, and second, the embedding (or
extension) of the interface’s velocity to this higher dimensional level set function.
This paper applies Sethian’s Fast Marching Method, which is a very fast technique
for solving the eikonal and related equations, to the problem of building fast and
appropriate extension velocities for the neighboring level sets. Our choice and con-
struction of extension velocities serves several purposes. First, it provides a way
of building velocities for neighboring level sets in the cases where the velocity is
defined only on the front itself. Second, it provides a subgrid resolution not present
in the standard level set approach. Third, it provides a way to update an interface
according to a given velocity field prescribed on the front in such a way that the
signed distance function is maintained, and the front is never re-initialized; this is
valuable in many complex simulations. In this paper, we describe the details of
such implementations, together with speed and convergence tests and applications
to problems in visibility relevant to semi-conductor manufacturing and thin film
physics. c© 1999 Academic Press

1. INTRODUCTION

Level set methods (see Osher and Sethian [10]) offer highly robust and accurate methods
for tracking interfaces moving under complex motions. They grew out of the theory of curve
and surface evolution developed by Sethian in [13, 14, 16], which constructs the notion
of weak solutions and entropy limits for evolving interfaces and links upwind numerical

1 Corresponding author. Supported in part by the Applied Mathematics Subprogram of the Office of Energy
Research under Contract DE-AC03-76SF00098 and the National Science Foundation and DARPA under Grant
DMS-8919074.

2

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press
All rights of reproduction in any form reserved.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 3

methodology for hyperbolic conservation laws to front propagation problems. The resulting
level set approach works in any number of space dimensions, handles topological merging
and breaking naturally, and is easy to program. Details about the theory, implementation,
and application of level set methods may be found in [18].

These techniques rely on two central embeddings: first, the embedding of the interface as
the zero level set of a higher dimensional function, and second, the embedding (or extension)
of the interface’s velocity to this higher dimensional level set function. More precisely, given
a moving closed hypersurface0(t), that is,0(t = 0) : [0,∞)→ RN , propagating with a
speedF in its normal direction, we wish to produce an Eulerian formulation for the motion
of the hypersurface propagating along its normal direction with speedF , whereF can be
a function of various arguments, including the curvature, normal direction, etc. Let±d be
the signed distance to the interface. If we embed this propagating interface as the zero level
set of a higher dimensional functionφ; that is, letφ(x, t = 0), wherex ∈ RN is defined by

φ(x, t = 0) = ±d, (1)

then an initial value partial differential equation can be obtained for the evolution ofφ,
namely

φt + F |∇φ| = 0, (2)

φ(x, t = 0) given. (3)

This is known as the level set equation. As discussed in [13, 14, 16], propagating fronts
can develop shocks and rarefactions in the slope, corresponding to corners and fans in the
evolving interface, and numerical techniques designed for hyperbolic conservation laws can
be exploited to construct upwind schemes which produce the correct, physically reasonable
entropy solution.

The above formulation reveals two central embeddings:

1. First, in the initialization step (Eq. (1)), the signed distance function is used to build
a functionφ which corresponds to the interface at the level setφ= 0. This step is known
as “initialization”; when performed at some later point in the calculation beyondt = 0, it is
referred to as “re-initialization.” The need for re-initialization in level set methods was first
discussed by Chopp in his work on minimal surfaces (see [8]).

2. Second, the construction of the initial value PDE given in Eq. (2) means that the
velocity F is now defined forall the level sets, not just the zero level set corresponding to
the interface itself. We can be more precise by rewriting the level set equation as

φt + Fext|∇φ| = 0, (4)

whereFext is some velocity field which, at the zero level set, equals the given speedF . In
other words,

Fext = F onφ = 0.

This new velocity fieldFext is known as the “extension velocity”; see Fig. 1.

How much freedom does one have in this extension construction? In fact, there is consid-
erable room to maneuver. The extension velocityFext should, in the limit as one approaches



4 ADALSTEINSSON AND SETHIAN

FIG. 1. Constructing extension velocities.

the zero level set, yield the speedF of the zero level set; i.e.

lim
x→a

Fext(x) = F(a),

wherea is a point on the front. Beyond these requirements, considerable opportunities are
available.

In this paper, we provide a fast methodology for constructing a particular choice of
extension velocity. There are three reasons for doing so:

1. No natural speed function. In some physical problems, the velocity at the interface
only has meaning at the front itself. For example, problems in semi-conductor manufacturing
simulations of the etching and deposition process involve determinations of the visibility
of the interface with respect to the etching/deposition beam; see [2–4]. This provides no
natural velocity off the front, since it is unclear what is meant by the “visibility” of the other
level sets. In this case, an extension velocity must be specifically constructed.

2. Subgrid resolution. As demonstrated in an example later in this paper, there are prob-
lems in which the speed of the interface changes very rapidly or discontinuously as the front
moves through the domain. In such cases, the exact location of the interface determines the
speed, and constructing a velocity from the position of the interface itself, rather than from
the somewhat less accurate grid velocities, is desirable.

3. Maintaining a nice level set representation. Under some velocities, such as those
which arise in fluid mechanics simulations [6, 20], the level sets have a tendency to either
bunch up or spread out, which manifests itself asφ becoming either very steep or flat.
The extension velocity discussed here is designed so that a level set function initialized
using the signed distance function is essentially maintained as the front moves; this will
be demonstrated in the examples section. Thus, the algorithm both avoids re-initialization,
which can often perturb the front, and also provides a technique which does not cause the
bunching and stretching of neighboring level set lines which has led to mass conservation
issues in some level set calculations.

The outline of this paper is as follows. First, we discuss some previous work on building
extension velocities. Next, we discuss the Fast Marching Method, which is at the core of
our technique. This is then followed by numerical tests and examples.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 5

2. CONSTRUCTION OF EXTENSION VELOCITIES: PREVIOUS WORK

The need to build extension velocities in the context of level set methods has been
recognized for some time and is intertwined with two other algorithmic methodologies in
level set methods, namely adaptive narrow band methods and level set re-initializations.
Here, we review some of that work to set the stage for the current paper.

2.1. Building Extension Velocities

A variety of level set simulations have used extension velocities in one form or another.
In many fluid simulations, one can choose to directly use the fluid velocity itself to act as
Fext. This is what was done in the two phase flow simulations of Chang, Hou, Merriman,
and Osher [6] and Sussman, Smereka, and Osher [20]. These were incompressible flow
calculations in which the velocity is continuous across the boundary. In these simulations,
bunching and flattening of the level set function occurs, which is then repaired every time
step through a re-initialization process which rebuilds the signed distance function through
an iterative process given in [20], based on an observation of Morel.

In cases where there is no available choice for an extension velocity, one approach is to
simply extrapolate; standing at each grid point, the value of the speed function at the closest
point on the front is used as the extension velocity at that point. This is the approach used
in [9] (see Fig. 2).

Another is to build a speed function from the front using some other technique. In [19], a
numerical simulation of dendritic solidification was performed. In this model, the velocity at
the interface depended on a jump condition across the interface and, hence, had no meaning
for the other “nonphysical” level sets. A boundary integral expression was developed for
the velocity on the interface, and this boundary integral was evaluated both on and off the
front to provide an extension velocity; this was the first example of an explicitly constructed
extension velocity for level set methods. A later work on crystal growth by Chen, Merriman,
Osher, and Smereka [7] worked directly with the partial differential equations (rather than the
conversion to a boundary integral) and built an extension velocity by solving an advection
equation in each component again coupled to a re-initialization procedure; we refer the
interested reader to [7] for a collection of impressive simulations performed using this
approach.

FIG. 2. Constructing extension velocities by extrapolation from the front.



6 ADALSTEINSSON AND SETHIAN

2.2. Narrow Band Level Set Methods and Re-initialization

The original level set method described by Osher and Sethian in [10] updated all the level
sets, not just the zero level set. Adalsteinsson and Sethian introduced narrow band level set
methods in [1], which confine computation to a narrow band around the interface of interest.
The narrow band was of arbitrary size. As the front moved and reached the edge of the narrow
band, the calculation was stopped, and a new initial level set function corresponding to the
signed distance function was re-built. This was known as “re-initialization.” A very large
narrow band meant that one was essentially computing everywhere, and this re-initialization
was never performed. A very thin narrow band meant that one was computing only very
close to the front and, hence, re-initializing every time step. The numerical tests reported
in [1] indicated that a narrow band of a particular size (around 6–10 grid points each side
of the front) seemed to be the correct balance between work spent updating points in the
band and work spent doing re-initialization.

The papers of Zhaoet al. [21] and Chenet al. [7] choose to use a limiting case of
our narrow band methodology, work with a very small local band, and re-initialize every
time step. Rather than characterize the band of points by their physical distance from the
front, they opt to characterize those points by theirφ values. Their narrow band is very
small, and hence, they re-initialize every time step. These re-initializations are performed
in several ways. The most straightforward is to simply formally compute the distance to the
zero level set, as was done in Chopp’s [8] original work; this, however, is computationally
inefficient. As mentioned earlier, one approach is to use the iteration technique given in
[20]. However, re-initialization every time step can lead to movement of the zero level set
and must be performed extremely carefully; otherwise serious difficulties will result. If
one’s goal is to re-initialize only in a band one or two cells around the front, one might
try an iterative technique. For greater distances, and indeed, as a methodology for building
distance functions away from curves and surfaces in general, the Fast Marching Method
offers a very fast(O(N log N) approach, whereN is the total number of points) technique.
This will be discussed in detail below.

2.3. Equations for Extension Velocities

What are desirable properties of an extension velocity? Obviously it should match the
given velocity on the front itself. Another desirable feature is that it move the neighboring
level sets in such a way that the signed distance function is preserved. Consider for a moment
an initial signed distance functionφ(x, t = 0), and suppose one builds an extension velocity
of the form

∇Fext · ∇φ = 0, (5)

as was discussed in [21]. Then it is straightforward to show that the level set functionφ

remains the signed distance function for all time, assuming that bothF andφ are smooth.
To see that this is so (see [21]), suppose that initially|∇φ(x, t = 0)| =1, and we move under
the level set equationφt + Fext|∇φ| =0; then we note that

d|∇φ|2
dt

= d

dt
(∇φ · ∇φ) = 2∇φ · d

dt
∇φ = −2∇φ · ∇Fext|∇φ| − 2∇φ · ∇|∇φ|Fext.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 7

The first term on the right is zero because of the way the extension velocity is constructed; the
second is zero because|φ(x, t = 0| =1. Thus,|∇φ| =1 is one solution to this equation; this
plus a uniqueness result for this differential equation shows that|∇φ| =1 for all time.

Thus, our strategy is as follows. Given a level set function, in this paper we show how
to simultaneously construct a signed distance function and an extension velocityFext very
rapidly using the Fast Marching Method. We then use this velocity to update the level set
functionφ. There are several important things to note about our proposed algorithm:

• This construction finds an extension velocity which is then used to update the level set
function. One can, of course, use as a high order method as one chooses for the level set up-
date. If one wants to perform this update restricted to a narrow band using the narrow band
methodology of [1], one is free to do so. However, this methodology provides a way of
doing so in all of space very rapidly, i.e.,O(N log N), whereN is the total number of points
where one wants to build this extension velocity.
• In this approach, one can choose to never re-initialize the level set function. Our

approach is as follows:
1. Consider a level set functionφn at time stepn1t = 0.
2. Build the extension velocity by simultaneously constructing a temporary signed

distance functionφtemp and an extension velocity such that

∇φtemp · ∇Fext = 0,

with φtempmatchingφn at their zero level sets andFext matching theF given on the
interface.

3. Then advance the level set functionφn under the computed extension velocity to
produce a newφn+1 by solvingφt + Fext|∇φ| =0.

Thus, the proposed algorithm never re-initializes the evolving level set function,
yet moves it under a velocity field that maintains the signed distance function.
This avoids a large set of problems that have plagued some implementations of
level set methods, namely that re-initialization steps can perturb the position of the
front corresponding to the zero level set. Better yet, the velocity field itself is quite
smooth and does not suffer from the undesirable bunching and stretching of level
sets that have also plagued some level set calculations.

• In our approach, we are going to explicitly find the zero level set corresponding to the
interface in order to build the extension velocity. One of the appeals of level set methods
is that the front need not be explicitly constructed and that all of the methodology may be
executed on the underlying grid. Our approach is in fact to find the front in both two- and
three-dimensional problems; however, we shall never move or update that representation.
In cases of speed functions that depend on factors like visibility, this is completely natural.
A central virtue of level set methods lies in the update of the level set function on a discrete
mesh to embed the motion of the interface itself, rather than to advance a discrete tracked
representation of the front. This strategy and philosophy are maintained in our approach.

To summarize, our algorithm allows one to update an interface represented by an initial
signed distance function according to a velocity field given on the front in such a way
that the signed distance function is maintained, and the front is never re-initialized. If one
chooses to use the adaptive methodologies given in the narrow band approach, occasional
rebuilding of the narrow band may be required, but this is performed only sporadically.



8 ADALSTEINSSON AND SETHIAN

In order to proceed with the algorithm, we now review some aspects of the Fast Marching
Method and show how it can be used to both construct signed distance functions and
extension velocities; this is the subject of the next section.

3. THE FAST MARCHING METHOD

Here, we briefly review the Fast Marching Method for computing the solution to the
eikonal equation; for the details see [17]. The goal is to solve the equation

|∇u| = F(x, y). (6)

The key idea is to build an approximation to the gradient term which correctly deals with
the development of corners and cusps in the evolving solution. It is well-known that the
above eikonal equation becomes nondifferentiable, and an appropriate weak solution must
be built; this is related to the entropy condition for propagating interfaces introduced in
[14]. One of the simplest such upwind entropy-satisfying approximations to the gradient is
due to Godunov and was used, for example, by Rouy and Tourin [12] to solve the eikonal
equation, namely max

(
D−x

i j u,−D+x
i j u, 0

)2+
max

(
D−y

i j u,−D+y
i j u, 0

)2

1/2

= Fi j . (7)

Additional schemes for solving Hamilton–Jacobi equations may be found in [10, 5].
The central idea behind the Fast Marching Method is to systematically advance the front

in an upwind fashion to produce the solutionu. The key idea is the observation that the
upwind difference structure of Eq. (7) means that information propagates “one way,” that
is, from smaller values ofu to larger values. Hence, the Fast Marching Method rests on
“solving” Eq. (7) by building the solution outward from the smallestu value. The algorithm
is made fast by confining the “building zone” to a narrow band around the front. The idea
is to sweep the front ahead in an upwind fashion by considering a set of points in a narrow
band around the existing front and to march this narrow band forward, freezing the values
of existing points and bringing new ones into the narrow band structure. The key is in the
selection ofwhichgrid point in the narrow band to update.

The algorithm is as follows: Put the points into three sets:Far, CloseandAccepted. We
tag points in the initial conditions asAccepted. We then tag asCloseall points one grid
point away. Finally, we tag asFar all other grid points. Then the loop is

1. Begin loop: LetTrial be the point inClosewith the smallest value foru.
2. Move all neighbors ofTrial that are inFar into Close.
3. Recompute the values ofu at all neighbors ofTrial that are inCloseaccording to

Eq. (7) by solving the quadratic equation, treating all points inCloseandFar as if they had
the value∞.

4. Move the pointTrial into Accepted.
5. Return to top of loop.

This algorithm works because the process of recomputing theu values at downwind
neighboring points cannot yield a value smaller than any of the accepted points. Thus, we
can march the solution outward, always selecting the narrow band grid point with minimum



FAST CONSTRUCTION OF EXTENSION VELOCITIES 9

FIG. 3. Upwind construction of accepted values.

trial value foru, and readjusting neighbors (see Fig. 3). Another way to look at this is that
each minimum trial value begins an application of Huyghen’s principle, and the expanding
wave front touches and updates all others.

The speed of the algorithm comes from a heapsort technique to efficiently locate the
smallest element in the setTrial. Let us now perform a quick operation count on the method.
Suppose there are a total ofN computational points in a domain, and one wants to solve the
eikonal equation away from an initial curve or surface0 lying in this domain. Imagine that
it took no time at all to locate the smallest trial value. Then since each point in the domain
is touched only once during the update, the total operation count to construct the solution to
the eikonal equation isO(N). By using heapsort methodology, the smallest such point can
be located inO(log N), and hence, the entire method is orderN log N. This is a very fast
algorithm; in most cases logN is very small. We point out that if one wants to produce this
eikonal solution only very close to the front (one or two points away), one might attempt to
iterate the solution is done in [20]. However, beyond a small range around the boundary data
0, this approach is less computationally efficient than the Fast Marching Method. Since we
will use our algorithm to construct extension velocities any distance from the interface, the
efficiency of Fast Marching Methods is desirable. For more details, see [17, 18].

4. USING THE FAST MARCHING METHOD TO CONSTRUCT SIGNED

DISTANCES AND EXTENSION VELOCITIES

Recall that given a level set functionφn, our goal is to build an extension velocityFext such
that if |∇φ| =1, then updating under this extension velocity maintains this unit gradient.
The plan is to solve the equation

∇φtemp · ∇Fext = 0

so thatφtemp is the signed distance function which has the same zero level set as the level
set functionφn. We stress that we do not use this computed signed distance to re-initialize
the level set function; it is used only in the construction ofFext.



10 ADALSTEINSSON AND SETHIAN

4.1. Constructing Signed Distances

Suppose we are given a level set functionφn, where the superscriptn indicates the time
step in the usual notation, and suppose that this level set function does not correspond to
the signed distance function. We can use the Fast Marching Method to compute the signed
distanceφtemp by solving the eikonal equation

|∇T | = 1

on either side of the interface, with the boundary condition thatT = 0 on the zero level set
of φ. The solutionT will then be our temporary signed distance functionφtemp. The Fast
Marching Method is run separately for grid points outside and inside the front (we note
that determining whether a grid point is inside or outside is immediately apparent from the
given level set functionφn).

The only difficulty is in the initialization stage of the Fast Marching Method, that is,
the computation of the approximate distances of the set ofClosepoints in order to begin
the Fast Marching Method. We now show how to find the initial set ofClosevalues for
grid points outside of a two-dimensional front; points inside the front and points close to a
three-dimensional surface are handled similarly.

Begin by initially tagging asClosethose grid points where one of the neighbors lies inside
the front. We must assign values at these points to approximate the distances to the front.
While this can be computed exactly for a smooth front, a faster method can be designed
which only uses the intersection of the front with the grid lines. This is particularly useful
when the front is given as the zero level set of a function defined at the grid points and a
smooth representation is not available.

Up to rotation, there are five possible cases that need to be considered and are shown in
Fig. 4.

• In Fig. 4a, only one of the neighboring points is on the other side of the front. Here we
define the value to be the distances to the intersection point on the line connecting the two

FIG. 4. All cases for the neighborhood of a point.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 11

grid points. This value is larger than the real distance to the front, but most likely the value
at the grid point on the other side is the distance to the same point, so that the zero level set
will not have moved after the re-initialization.
• In Fig. 4b, two of the neighbors are on the other side of the front. In this case the value

is defined as the exact distance to the line segment between the two intersection points. If
s andt are the distances to the intersection points, the exact distanced satisfies(

d

s

)2

+
(

d

t

)2

= 1.

The left-hand side is an upwind approximation to the gradient of the distance function,
since the distance is zero at the intersection points. This suggests what the solution should
be for the remaining three cases and how it should be computed in 3D.
• In Fig. 4c, the distance is the positive solution to(

d

min(s1, s2)

)2

+
(

d

t

)2

= 1.

• In Fig. 4d, the distance is

d = min(s1, s2).

• In Fig. 4e, the distance is the positive solution to(
d

min(s1, s2)

)2

+
(

d

min(t1, t2)

)2

= 1.

4.2. Constructing the Velocity Extensions Fext

Our goal now is to extend a speed function given along an interface to grid points around
the front. This extension should extend the speed in a continuous manner and avoid, if
possible, the introduction of any discontinuities in the speed close to the front. Thus, we
want to construct a speed functionFext that satisfies the equation

∇Fext · ∇φtemp= 0.

The basic idea is to march outwards according to the Fast Marching Method perspective,
systematically and simultaneously attaching two values to each grid point, the distance
from the front, and the extended speed value. We first compute the signed distanceφtemp

to the front using the Fast Marching Method, as described in the previous section. As the
Fast Marching Method constructs the signed distance at each grid point, we simultane-
ously update the speed valueFext according to Eq. (5). In the gradient stencil, we only
use neighboring points closer to the front to maintain the upwind ordering of the point
construction.

In more detail, and similar to the construction of signed distances, we need first to find
the speed values for the inital set ofClosepoints in order to begin the technique, and then
second, to update the extension value when the distance value is updated according to the
above equation.

One technique for building extension velocities near the front would be to copy the speed
of the closest grid point, as was described earlier. Instead, we take a weighted average of



12 ADALSTEINSSON AND SETHIAN

the speed values at the points which are used in computing the distance, where the weight is
proportional to one over the square of the distance. This is equivalent to solving the equation
∇Fext · ∇φtemp= 0.

As an example, consider the cases in Fig. 4. For simplicity, assume that we are computing
the extension value for the point(i, j ) in the center.

• For Fig. 4a, the extension speed isf = f (i, j − s).
• For Fig. 4b, the gradient is given by(

−d

t
,

d

s

)
.

The equation∇Fext · ∇φtemp= 0 is

0 =
(
− f − f (i + t, j )

t
,

f − f (i, j − s)

s

)
·
(
−d

t
,

d

s

)
= d

[
f − f (i + t, j )

t2
+ f − f (i, j − s)

s2

]
,

in which case

f = (1/t2) f (i + t, j )+ (1/s2) f (i, j − s)

1/t2+ 1/s2
.

This equation indicates the solution for the remaining cases and for the three-dimensional
case. Our expression assumes that the speed of the interface is given at the intersection
points of the interface with the grid lines. If the speed is given at other points, one can either
use interpolation to get the speed values, or modify the above algorithm.
• For Fig. 4c, the equation is

f = (1/t2) f (i + t, j )+ (1/s2) f (i, j + s)

1/t2+ 1/s2
,

wheres= s1 if |s1|< |s2|; otherwises= s2.
• For Fig. 4d, the equation is

f = f (i, j + s),

wheres is chosen as in the term before.
• For Fig. 4e, the equation is

f = (1/t2) f (i + t, j )+ (1/s2) f (i, j + s)

1/t2+ 1/s2

wheres andt are chosen between the entry from{s1, s2} and{t1, t2} which are smaller in
absolute value.

Once values for both the signed distance and the extension function are established at
Closepoints, we need only update extension values. As the distance value is updated using
the Fast Marching Method, a new extension value is chosen such that∇Fext · ∇φtemp= 0,



FAST CONSTRUCTION OF EXTENSION VELOCITIES 13

where the gradient ofFext andφtemp are calculated using the points that contributed in the
update ofφ. If no points from a grid direction are used, the corresponding component of
the gradient is zero.

As an example, consider the case shown in Fig. 4b. Here the new distance value at(i, j )
is found by solving Eq. (7). Assuming that(i + 1, j ) and(i, j − 1) are the points that are
used in updating the distance, ifv is the new extension value, it then has to satisfy an upwind
version of Eq. (5), namely

(
φ

temp
i+1, j − φtemp

i, j

h
,
φ

temp
i, j − φtemp

i, j−1

h

)
·
(

Fi+1, j − v
h

,
v − Fi, j−1

h

)
= 0.

Since(i + 1, j ) and(i, j − 1) have been accepted,F is defined at those points, and this
equation can be solved with respect tov to produce

v = Fi+1, j
(
φ

temp
i, j − φtemp

i+1, j

)+ Fi, j−1
(
φ

temp
i, j − φtemp

i, j−1

)(
φ

temp
i, j − φtemp

i+1, j

)+ (φtemp
i, j − φtemp

i, j−1

) .

This means that, at the end,∇Fext · ∇φtemp= 0 is satisfied for all points on the grid, except
the points along the front itself. At those points, the previous construction will make the
equation satisfied when the gradient approximation is computed using points on the front
as mentioned before.

Finally, we point out that our technique allows one to extend either the normal speed
function F or an advective component velocity field(u, v) by extending each component
separately.

5. NUMERICAL TESTS

In this section, we perform a series of numerical tests to analyze this extension construc-
tion. These tests are design to analyze the following:

• How much time does it take to construct these extension velocities?
• How well do extension velocities constructed by our method maintain the signed

distance function?
• Are there any special difficulties in three dimensions, in executing topological change,

or in extending speed laws depending on second-order effects (such as curvature motion)?
• What is the advantage of using this technique in problems with subgrid effects?
• Does the algorithm allow adequate construction of off-front speeds in the case where

there is no natural extension and the front motion is highly complex, such as those that
result from visibility issues, angle-dependent ion-milling flux functions, etc.)?

By way of description, we call the technique in this paper the “extension” method, while
defining the “no extension” method to be the one which one uses a velocity defined and
available at each particular level set. Also, we shall distinguish between the narrow band
method which limits computation to the narrow band versus the full matrix method, which
operates on the entire computational domain. We now proceed to provide data to answer
these questions.



14 ADALSTEINSSON AND SETHIAN

FIG. 5. Constructing extension velocities.

5.1. Accuracy and Timings

We begin with a straightforward accuracy and timings check (we shall return to a more
precise check in the next section). We begin with a pure advection problem of translating a
circle with velocity(u, v)= (2, 3). The circle has radius 10, centered at (20, 20) in a box [0,
60], [0, 60] (on a 61× 61 grid). While somewhat unnatural, we recast this problem as one
of front moving normal to itself with speed in the normal direction given byF = En · (2, 3),
whereEn is the normal to the front. We note that at each grid point we need the normal
speed of the front and use a second-order upwind scheme to advect the front. For the “no-
extension” method, we calculate the normal at every grid point by evaluating∇φ/|∇φ|,
and the normal speed is then the inner product of the normal and the vector (2, 3). For the
“extension” method, we begin by finding the points where the front intersects the grid lines.
We then calculate the normal at those points using theφ function and take the inner product
with (2, 3) to find the speed of the front at those points. We then extend the speed onto the
grid points.

We first compare the accuracy of the two methods. The two different methods are in close
agreement, even for a relatively coarse grid. The differences are so small that comparing
the areas of the circles is not a useful measure. In Fig. 5 we show the level of agreement
by zooming in on a portion of the circle and by comparing the two computed solutions to
the analytical solution. The numerical solutions almost overlap completely; the accuracy
difference between extending or not extending the speed function is far less significant than
the numerical error inherent in the space and time discretization of the derivative operators.

Table I compares the execution speeds. We show the total execution time it takes to
advect the circle between two corners of the square. We vary the grid size and compare the

TABLE I

Simple Advection with Velocity (2, 3)

Narrow band Full method

Grid size Extension No extension Extension No extension

60 less than 1 s less than 1 s 3 s less than 1 s
120 5 s 2 s 22 s 12 s
240 30 9 180 96
600 450 94 3500 1600



FAST CONSTRUCTION OF EXTENSION VELOCITIES 15

FIG. 6. Motion under elongation speed function: the small dotted circle in each figure is the initial front. The
larger dark circle and the neighboring level curves are computed at timet = 0.633.

execution times both for the narrow band approach and the full level set method. These runs
are on Sun Sparc II.

These results show that the execution time for the extension problem is roughly three
to four times slower than the direct method. It has worse scaling, which is to be expected
since the cost of extending the speed toM grid points isO(M log(M)). However, we note
an important fact; it costs almost nothing to evaluate the speed function in this example. In
problems where calculation of the speed function isitself time-consuming (for example,
in the evaluation of a boundary integral to determine the speed function), minimizing the
number of points at which this must be performed leads to significant speedup. As soon as
the cost of computing the speed at the grid points is more thanO(log(M)), the extension
technique becomes competitive and, in fact, can be faster than the direct method.

The above was designed to show a simulation in which the motion is obvious. A more
detailed timing run is as follows. We use a circle with center (10, 6), radius 3, in a box with
bounding coordinates [0, 20], [0, 20]. The speed function is chosen asF(x, y) = a∗ y+ b,
wherea andb are chosen so thatF(x, 2)= 1.0 andF(x, 10)= 10.0. Thus, the motion is
one which elongates the circle as it propagates outwards. The calculation is performed on
a 101× 101 grid. In Fig. 6, we show the results of this calculation. On the left, we show
the initial front, together with the front at timeT = 0.633 and the other level sets. The
initial front is the small dotted circle, while the front at a later time is shown as a dark
curve. This calculation is performed without using any extension velocities; the speedF is
taken directly from the analytic function given above. On the right, the same calculation is
repeated using the extension velocity calculated using our algorithm. The figure on the left
shows distortion of the neighboring level sets, while the one calculated using our extension
velocity algorithm maintains nicely the signed distance function, as seen by the evenly
spaced level sets.

In the previous example, we provided timing results for the extension method versus the
nonextension method. Here, we provide detailed timing measurements and show how the
time required to build our extension velocity depends on the number of grid points where
one wants values. In Fig. 7, we show timings on a 350 MHz 604e-PowerPC processor.
As the grid is refined, there are more points on the front, and hence, the extension takes
longer. We show results for various widths of the narrow band, and then finally for the “full”



16 ADALSTEINSSON AND SETHIAN

FIG. 7. Timings table for elongation flow.

method in which we construct extension velocities at all grid points in the full computational
domain. As expected, the timings go up as the number of grid points increase; the increase
is essentially linear, since the logN term is almost one for these values.

5.2. Maintaining the Signed Distance Function

Next, we verify that our algorithm constructs an extension velocity which maintains the
signed distance function, assuming one starts from initial data which itself has the property
that |∇φ(x, y, t = 0)| = 1. We consider two separate problems, each designed to cause
significant shearing, stretching, and compression of the neighboring level set functions.

First, we consider a speed function of the form

F = 2(R− (3.0+ 2t)) sin(4θ)+ 2

whereR= (x2+ y2)1/2, θ is the angle made between the vector(x, y) and the positivex
axis, andt is the time. Here, the initial circle is centered at the origin with radius 3. The
calculation is performed on a 101× 101 grid. We show the initial level set function (Fig. 8a),
the results at timet = 0.8 using the given velocity field (“no extension”) (Fig. 8b), and the re-
sults using our extension velocity in (Fig. 8c). The use of the given velocity causes the level
sets neighboring the zero level set (shown as a dark line) to wildly diverge, while using the
extension velocity causes the level sets to remain equally spaced and to conform with the
zero level set. The exact solution to this problem, which can be seen from the velocity field,
is a circle with radius given at timet by (3+ 2t), which matches our computed solution.

FIG. 8. Effect of no-extension and extension velocities on neighboring level sets: there is no reinitialization
of the level set function at any time.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 17

FIG. 9. Effect of no-extension and extension velocities on neighboring level sets: there is no reinitialization
of the level set function at any time.

We now repeat this calculation for another example and provide a quantitative measure-
ment for the error involved. This time, we use a velocity field of the form

F = ((R− 3)2+ 1)(2+ sin(4θ)).

The calculation is performed on a 401× 401 grid. We start with the same initial data as
given in Fig. 9a. This velocity field produces significant distortions in the front. In Fig. 9,
we show the front at timet = 0.45 andt = 0.90 both without the extension and with our
extension velocity. It is clear that the extension velocity preserves the initial property of
the signed distance velocity, namely|∇φ| =1, as can be seen by the equal spacing of the
neighboring level sets.

Next, we analyze the error as a function of mesh size in the computed solution. We do
this as follows. We assume that the finest calculation on a 800× 800 grid of the extension
velocity is the correct reference solution (for both first- and second-order methods), and
we compute the signed distance function from that zero level set at timet = 0.90. We do
this as follows. We take the points on the reference path and for each point we calculate
the minimum distance to the path we want to compare it to. This gives a list of distances
which are then used for the norm evaluations for theL∞, L1, andL2 errors. The calcu-
lation is made on a physical box of size(20× 20). The results are shown in Fig. 10 for
first- and second-order spatial methods. As expected, the error in the computed solution for
the interface using the extension velocity is considerably better than that computed using
the no-extension solution. Also, for a second order spatial method, the extension solution
is second order while the no-extension solution is first order.



18 ADALSTEINSSON AND SETHIAN

FIG. 10. Error analysis for no-extension and extension calculations.

5.3. Three Dimensions and Topological Change

Next, we show how to apply the extension techniques to three-dimensional problems
undergoing topological change. A good prototype problem is the collapse of a dumbbell
under mean curvature; as shown in [15], level set methods naturally track the topological
change that occurs at the narrowing of the handle. Here, we extend the mean curvature-based
speed function from the interface itself using the Fast Marching technique to the neighboring
grid points, and then update the level set function. The results are shown in Fig. 11. Similar
to the above example, we built a level set finder to construct nodal points at the triangular
representation of the zero level set, evaluated the curvature at these nodal points (by bilinear
interpolation from the mean curvature evaluated at the mesh grid points using standard level
set methodology), and then extended this curvature field to the narrow band. We stress that,
in the case of such a geometric speed law, it is far more natural to construct a speed function
at each grid point directly from the level set passing through that point, rather than to
develop the extension construction. However, we include this example to demonstrate the
applicability of our technique to sensitive three-dimensional problems involving higher
order derivatives (such as curvature), which can often be required in complex examples
such as three-dimensional etching/deposition simulations which include surface diffusion,
visibility, and re-emission/re-deposition.

FIG. 11. Extension velocity solution of collapse of dumbbell under mean curvature.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 19

5.4. Subgrid Accuracy

Next, we study subgrid accuracy. There is another significant class of problems in which
there is substantial benefit in using the speed extension rather than the natural speed at the
grid points. As an illustration, consider a problem in which there is a dramatic range of
speed values within a narrow spatial range. We take a domain in which the speed in the
normal direction is 1, except in a thin annulus of width-two grid cells where the speed is
100. As a practical motivation one might consider an etching problem in which a very thin
band of easily etched materials lies embedded within a material with much slower etch rate.
We start with an initial front that intersects the circle and advect the front according to the
given speed function. We note the difference between the extension and the direct approach:

• Extension.The speed at any point on the front can be calculated precisely by checking
if it is inside this annulus or not. This speed is then extended onto the surrounding grid
points. This leads to a more accurate detection of the front location and the accompanying
etch rate; the existence of the thin fast etch region is noted as the front passes through.
• Direct (No extension).Here, speeds are defined only in terms of the value of the etch

function at each grid point. Thus, if grid points near the annulus are used, they may provide
speed values which do not accurately reflect the local etch rate at the interface itself.

The results of the simulations for a 30 by 30 grid are shown in Fig. 12. On the left,
the direct solution method is shown; on the right, the extension technique is used. The
underlying grid is indicated by the dotted lines. On the left side, considerable jaggedness
occurs, since the effective speed of the front at each point will be an average of the speed at
the surrounding grid points. A much smoother and correct evolving profile is obtained using
the extension technique shown in the figures on the right. We note that merger is handled
easily; as the two fronts come close together the construction of extension velocities works
well, and the merger occurs as expected.

5.5. Complex Problems without Natural Speed Definitions

Finally, we apply these extension techniques to problems in which there is no natural
definition of the speed off of the evolving interface, and extension is necessary in order to
build an appropriate velocity embedding.

As an illustration, we consider aspects of etching and deposition in semi-conductor
manufacturing; see [4] for further discussion. Briefly, a typical problem involves a front
which is under bombardment from particles, some of which stick and the rest bounce off
the front and hit other parts of the surface. These re-emitted particles again have a certain
probability of sticking; the fractionβ of particles that attach themselves during any particular
collision is known as the sticking coefficient. IfI 0 is the material strength that arrives at the
front, the strength at which material sticks,IS, is given by the integral equation

IS(x) = β I 0(x)+ (1− β)
∫

Flux(x, y)IS(y)M(x, y) dy

(see [4]), where Flux(x, y) depends on the distance betweenx andy, and the mask function
M(x, y) will be 0 or 1, depending on whetherx andy are visible from one another. Dis-
cretizing this equation leads to the matrix equation

IS = β I 0+ (1− β)ÄIS,



20 ADALSTEINSSON AND SETHIAN

FIG. 12. Left= no extension; right= extension, beginning.



FAST CONSTRUCTION OF EXTENSION VELOCITIES 21

FIG. 13. Upwind construction of accepted values.

whereIS andI 0 are the total and incoming strength at points on the front, andÄ is a square
matrix.

Our technique to construct these extension velocities is as follows. First, in either two or
three space dimensions, we use a contour finder to find points where the front corresponding
to the zero level set intersects grid lines. This produces a set of nodal points, each representing
an area (either a line segment in two dimensions or a triangular element in three dimensions).
The values of the flux at each of these nodal points are unknowns in a matrix version of
the above integral equation. This matrix equation is solved through an iterative technique
with an accompanying recursion relation (see [4]) which provides the velocity at each nodal
point. We then use these velocities as the basis for starting the Fast Marching Method and
then construct extension velocities in the rest of the narrow band.

It is awkward to find a natural meaning for this velocity expression at each level set, since
it is physically meaningless. Since the majority of the time is spend setting up and solving
the matrix equation, the time it takes to extend the speed to neighboring grid points using
the Fast Marching Method is of little consequence.

In Fig. 13 the incoming light distribution is proportional to cos4(θ), whereθ is the angle
from the vertical. The sticking coefficient is 0.5, and the grid was 160 by 100. The execution
time was about 1 min. The deposition on the ceiling of the cave-like structure is due solely
to the effects of the redeposition.

5.6. Summary

We have described an algorithm based on the Fast Marching Method for constructing
extension velocities for use in level set calculations. The approach constructs an extension
velocity in O(N log N) time, whereN is the total number of points where one wants the
extension. This extension velocity moves the zero level set with a velocity which is given
on the front, preserves the signed distance function without need for re-initialization, and
provides subgrid accuracy in some certain cases.

ACKNOWLEDGMENTS

All calculations were performed at the University of California at Berkeley and the Lawrence Berkeley Labo-
ratory. We would like to thank D. Chopp for helpful discussions.



22 ADALSTEINSSON AND SETHIAN

REFERENCES

1. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating interfaces,J. Comput. Phys.118,
269 (1995).

2. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and
lithography I: Two-dimensional simulations,J. Comput. Phys.120(1), 128 (1995).

3. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and
lithography II: Three-dimensional simulations,J. Comput. Phys.122(2), 348 (1995).

4. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition, and
lithography III: Re-deposition, re-emission, surface diffusion, and complex simulations,J. Comput. Phys.
138(1), 193 (1997).

5. T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton–Jacobi and level set equations on tri-
angulated domains,J. Comput. Phys.145, 1 (1998).

6. Y. C. Chang, T. Y. Hou, B. Merriman, and S. J. Osher, A level set Formulation of Eulerian interface capturing
methods for incompressible fluid flows,J. Comput. Phys.124, 449 (1996).

7. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems,
J. Comput. Phys.138, 8 (1997).

8. D. L. Chopp, Computing minimal surfaces via level set curvature flow,J. Comput. Phys.106, 77 (1993).

9. R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation: A level set approach,
IEEE Trans. Pattern Anal. Mach. Intell.17(2), (1995).

10. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–
Jacobi formulation,J. Comput. Phys.79, 12 (1988).

11. E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading,SIAM. J. Numer. Anal.29(3),
867 (1992).

12. J. A. Sethian,An Analysis of Flame Propagation, Ph.D. dissertation, Mathematics, University of California,
Berkeley, 1982.

13. J. A. Sethian, Curvature and the evolution of fronts,Commun. Math. Phys.101, 487 (1985).

14. J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton–Jacobi equations and conservation
laws,J. Diff. Geom.31, 131 (1990).

15. J. A. Sethian, Numerical methods for propagating fronts, inVariational Methods for Free Surface Interfaces,
edited by P. Concus and R. Finn (Springer-Verlag, New Work, 1987).

16. J. A. Sethian, A fast marching level set method for monotonically advancing fronts,Proc. Nat. Acad. Sci.93,
4 (1996).

17. J. A. Sethian,Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and
Material Science(Cambridge Univ. Press, Cambridge, 1996).

18. J. A. Sethian and J. D. Strain, Crystal growth and dendritic solidification,J. Comput. Phys.98, 231 (1992).

19. M. Sussman, P. Smereka, and S. J. Osher, A level set method for computing solutions to incompressible
two-phase flow,J. Comput. Phys.114, 146 (1994).

20. H-K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase motion,
J. Comput. Phys.127, 179 (1996).


	1. INTRODUCTION
	FIG. 1.

	2. CONSTRUCTION OF EXTENSION VELOCITIES: PREVIOUS WORK
	FIG. 2.

	3. THE FAST MARCHING METHOD
	FIG. 3.

	4. USING THE FAST MARCHING METHOD TO CONSTRUCT SIGNED
DISTANCES AND EXTENSION VELOCITIES
	FIG. 4.

	5. NUMERICAL TESTS
	FIG. 5.
	TABLE I
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	ACKNOWLEDGMENTS
	REFERENCES

