Journal of Computational Physi&48,2—22 (1999)

®
Article ID jeph.1998.6090, available online at http://www.idealibrary.conl DE &l.

The Fast Construction of Extension Velocities
in Level Set Methods

D. Adalsteinsson and J. A. Sethian

Department of Mathematics and Lawrence Berkeley Laboratory, University of California,
Berkeley, California 94720
E-mail: sethian@math.berkeley.edu

Received December 22, 1997; revised July 30, 1998

Level set techniques are numerical techniques for tracking the evolution of inter-
faces. They rely on two central embeddings; first, the embedding of the interface as
the zero level set of a higher dimensional function, and second, the embedding (or
extension) of the interface’s velocity to this higher dimensional level set function.
This paper applies Sethian’'s Fast Marching Method, which is a very fast technique
for solving the eikonal and related equations, to the problem of building fast and
appropriate extension velocities for the neighboring level sets. Our choice and con-
struction of extension velocities serves several purposes. First, it provides a way
of building velocities for neighboring level sets in the cases where the velocity is
defined only on the front itself. Second, it provides a subgrid resolution not present
in the standard level set approach. Third, it provides a way to update an interface
according to a given velocity field prescribed on the front in such a way that the
signed distance function is maintained, and the front is never re-initialized; this is
valuable in many complex simulations. In this paper, we describe the details of
such implementations, together with speed and convergence tests and applications
to problems in visibility relevant to semi-conductor manufacturing and thin film
phySiCS. (© 1999 Academic Press

1. INTRODUCTION

Level set methods (see Osher and Sethian [10]) offer highly robust and accurate met
for tracking interfaces moving under complex motions. They grew out of the theory of cu
and surface evolution developed by Sethian in [13, 14, 16], which constructs the no
of weak solutions and entropy limits for evolving interfaces and links upwind numeri

! Corresponding author. Supported in part by the Applied Mathematics Subprogram of the Office of En
Research under Contract DE-AC03-76SF00098 and the National Science Foundation and DARPA under
DMS-8919074.

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 3

methodology for hyperbolic conservation laws to front propagation problems. The resul
level set approach works in any number of space dimensions, handles topological me
and breaking naturally, and is easy to program. Details about the theory, implementa
and application of level set methods may be found in [18].

These techniques rely on two central embeddings: first, the embedding of the interfa
the zero level set of a higher dimensional function, and second, the embedding (or exten
of the interface’s velocity to this higher dimensional level set function. More precisely, gi\
a moving closed hypersurfadg(t), that is,I"(t =0) : [0, oo) — RN, propagating with a
speedr in its normal direction, we wish to produce an Eulerian formulation for the motic
of the hypersurface propagating along its normal direction with speadhereF can be
a function of various arguments, including the curvature, normal direction, etezd.ée
the signed distance to the interface. If we embed this propagating interface as the zerc
set of a higher dimensional functign that is, letp (x, t = 0), wherex € RN is defined by

d(x,t =0) = =+d, (1)

then an initial value partial differential equation can be obtained for the evolutign of
namely

¢+ FIVe| =0, (2)
¢o(X,t =0) given 3)

This is known as the level set equation. As discussed in [13, 14, 16], propagating fr
can develop shocks and rarefactions in the slope, corresponding to corners and fans
evolving interface, and numerical techniques designed for hyperbolic conservation law:
be exploited to construct upwind schemes which produce the correct, physically reasol
entropy solution.

The above formulation reveals two central embeddings:

1. First, in the initialization step (Eg. (1)), the signed distance function is used to bt
a functiong which corresponds to the interface at the levelgset0. This step is known
as “initialization”; when performed at some later point in the calculation beyend, it is
referred to as “re-initialization.” The need for re-initialization in level set methods was fi
discussed by Chopp in his work on minimal surfaces (see [8]).

2. Second, the construction of the initial value PDE given in Eq. (2) means that
velocity F is now defined forll the level sets, not just the zero level set corresponding
the interface itself. We can be more precise by rewriting the level set equation as

¢t + Fextl Vo =0, 4)

whereF is some velocity field which, at the zero level set, equals the given dpekd
other words,

Fex=F ong =0.

This new velocity fieldFe is known as the “extension velocity”; see Fig. 1.

How much freedom does one have in this extension construction? In fact, there is col
erable room to maneuver. The extension veloEity should, in the limit as one approaches

4 ADALSTEINSSON AND SETHIAN

f [] _-F?

_,.,—“""-'
S

R
- F

*\
|y

Ilyllll'i F?
r \F

FIG. 1. Constructing extension velocities.

the zero level set, yield the speEdof the zero level set; i.e.
>|<i£>na I:ext(x) = F(a)’

wherea is a point on the front. Beyond these requirements, considerable opportunities
available.

In this paper, we provide a fast methodology for constructing a particular choice
extension velocity. There are three reasons for doing so:

1. No natural speed function some physical problems, the velocity at the interfac
only has meaning atthe frontitself. For example, problems in semi-conductor manufactt
simulations of the etching and deposition process involve determinations of the visib
of the interface with respect to the etching/deposition beam; see [2—4]. This provide
natural velocity off the front, since it is unclear what is meant by the “visibility” of the othe
level sets. In this case, an extension velocity must be specifically constructed.

2. Subgrid resolutionAs demonstrated in an example later in this paper, there are pri
lems in which the speed of the interface changes very rapidly or discontinuously as the
moves through the domain. In such cases, the exact location of the interface determine
speed, and constructing a velocity from the position of the interface itself, rather than f
the somewhat less accurate grid velocities, is desirable.

3. Maintaining a nice level set representatiodnder some velocities, such as thost
which arise in fluid mechanics simulations [6, 20], the level sets have a tendency to e
bunch up or spread out, which manifests itselfgabecoming either very steep or flat.
The extension velocity discussed here is designed so that a level set function initial
using the signed distance function is essentially maintained as the front moves; this
be demonstrated in the examples section. Thus, the algorithm both avoids re-initializa
which can often perturb the front, and also provides a technique which does not caus
bunching and stretching of neighboring level set lines which has led to mass conserv:
issues in some level set calculations.

The outline of this paper is as follows. First, we discuss some previous work on build
extension velocities. Next, we discuss the Fast Marching Method, which is at the cor
our technique. This is then followed by numerical tests and examples.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 5

2. CONSTRUCTION OF EXTENSION VELOCITIES: PREVIOUS WORK

The need to build extension velocities in the context of level set methods has t
recognized for some time and is intertwined with two other algorithmic methodologies
level set methods, namely adaptive narrow band methods and level set re-initializat
Here, we review some of that work to set the stage for the current paper.

2.1. Building Extension Velocities

A variety of level set simulations have used extension velocities in one form or anot
In many fluid simulations, one can choose to directly use the fluid velocity itself to ac
Fext- This is what was done in the two phase flow simulations of Chang, Hou, Merrim
and Osher [6] and Sussman, Smereka, and Osher [20]. These were incompressible
calculations in which the velocity is continuous across the boundary. In these simulati
bunching and flattening of the level set function occurs, which is then repaired every 1
step through a re-initialization process which rebuilds the signed distance function thrc
an iterative process given in [20], based on an observation of Morel.

In cases where there is no available choice for an extension velocity, one approach
simply extrapolate; standing at each grid point, the value of the speed function at the cl
point on the front is used as the extension velocity at that point. This is the approach |
in [9] (see Fig. 2).

Another is to build a speed function from the front using some other technique. In [1€
numerical simulation of dendritic solidification was performed. In this model, the velocity
the interface depended on a jump condition across the interface and, hence, had no me
for the other “nonphysical” level sets. A boundary integral expression was developec
the velocity on the interface, and this boundary integral was evaluated both on and of
front to provide an extension velocity; this was the first example of an explicitly construc
extension velocity for level set methods. A later work on crystal growth by Chen, Merrim
Osher, and Smereka [7] worked directly with the partial differential equations (rather thar
conversion to a boundary integral) and built an extension velocity by solving an advec
equation in each component again coupled to a re-initialization procedure; we refel
interested reader to [7] for a collection of impressive simulations performed using
approach.

F=Extended

| [<]

¥

\ ~ P
F=Extended —

~o
I ~__

Fa
F=Extended |4 | |
S 7 F

)\ (O Lhﬁ F=Extended

F

FIG. 2. Constructing extension velocities by extrapolation from the front.

6 ADALSTEINSSON AND SETHIAN

2.2. Narrow Band Level Set Methods and Re-initialization

The original level set method described by Osher and Sethian in [10] updated all the |
sets, not just the zero level set. Adalsteinsson and Sethian introduced narrow band lev
methods in [1], which confine computation to a narrow band around the interface of intel
The narrow band was of arbitrary size. As the front moved and reached the edge of the ne
band, the calculation was stopped, and a new initial level set function corresponding tc
signed distance function was re-built. This was known as “re-initialization.” A very lar
narrow band meant that one was essentially computing everywhere, and this re-initializ:
was never performed. A very thin narrow band meant that one was computing only \
close to the front and, hence, re-initializing every time step. The numerical tests repc
in [1] indicated that a narrow band of a particular size (around 6—10 grid points each
of the front) seemed to be the correct balance between work spent updating points i
band and work spent doing re-initialization.

The papers of Zhaet al. [21] and Chenet al. [7] choose to use a limiting case of
our narrow band methodology, work with a very small local band, and re-initialize ev
time step. Rather than characterize the band of points by their physical distance fron
front, they opt to characterize those points by thgeivalues. Their narrow band is very
small, and hence, they re-initialize every time step. These re-initializations are perfor
in several ways. The most straightforward is to simply formally compute the distance to
zero level set, as was done in Chopp’s [8] original work; this, however, is computation:
inefficient. As mentioned earlier, one approach is to use the iteration technique give
[20]. However, re-initialization every time step can lead to movement of the zero level
and must be performed extremely carefully; otherwise serious difficulties will result.
one’s goal is to re-initialize only in a band one or two cells around the front, one mi
try an iterative technique. For greater distances, and indeed, as a methodology for bui
distance functions away from curves and surfaces in general, the Fast Marching Me
offers a very fastO(N log N) approach, wher#l is the total number of points) technique.
This will be discussed in detail below.

2.3. Equations for Extension Velocities

What are desirable properties of an extension velocity? Obviously it should match
given velocity on the front itself. Another desirable feature is that it move the neighbor
level sets in such a way that the signed distance function is preserved. Consider fora mc
an initial signed distance functigin’x, t = 0), and suppose one builds an extension velocit
of the form

VFext- Vo =0, (5)

as was discussed in [21]. Then it is straightforward to show that the level set fugctio
remains the signed distance function for all time, assuming that®athd¢ are smooth.
To see thatthisis so (see [21]), suppose that initidly (x, t =0)| = 1, and we move under
the level set equatiogy + Fex| Vo| = O; then we note that

dive? d _ d_
Gt gV Ve =2Ve . Vo= -2V VFed V| — 2V - VIVe|Feu.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 7

The firstterm on the right is zero because of the way the extension velocity is constructec
second is zero becaugg(x, t = 0| = 1. Thus|V¢| = 1is one solution to this equation; this
plus a uniqueness result for this differential equation showg that—= 1 for all time.

Thus, our strategy is as follows. Given a level set function, in this paper we show |
to simultaneously construct a signed distance function and an extension vélggeitgry
rapidly using the Fast Marching Method. We then use this velocity to update the leve
function¢. There are several important things to note about our proposed algorithm:

e This construction finds an extension velocity which is then used to update the leve
function. One can, of course, use as a high order method as one chooses for the level s
date. If one wants to perform this update restricted to a narrow band using the narrow |
methodology of [1], one is free to do so. However, this methodology provides a way
doing soin all of space very rapidly, i.®©,(N log N), whereN is the total number of points
where one wants to build this extension velocity.

e In this approach, one can choose to never re-initialize the level set function.
approach is as follows:

1. Consider a level set functiatf' at time stepAt =0.
2. Build the extension velocity by simultaneously constructing a temporary sigr
distance functio®™P and an extension velocity such that

V™. VFey = 0,

with ¢®™P matchingg" at their zero level sets arfél, matching thek given on the
interface.

3. Then advance the level set functigh under the computed extension velocity tc
produce a new"** by solving¢; + Fex|Vo| =0.

Thus, the proposed algorithm never re-initializes the evolving level set functi
yet moves it under a velocity field that maintains the signed distance functi
This avoids a large set of problems that have plagued some implementation
level set methods, namely that re-initialization steps can perturb the position of
front corresponding to the zero level set. Better yet, the velocity field itself is qu
smooth and does not suffer from the undesirable bunching and stretching of |
sets that have also plagued some level set calculations.

e In our approach, we are going to explicitly find the zero level set corresponding to
interface in order to build the extension velocity. One of the appeals of level set mett
is that the front need not be explicitly constructed and that all of the methodology may
executed on the underlying grid. Our approach is in fact to find the front in both two- ¢
three-dimensional problems; however, we shall never move or update that represent:
In cases of speed functions that depend on factors like visibility, this is completely natt
A central virtue of level set methods lies in the update of the level set function on a disc
mesh to embed the motion of the interface itself, rather than to advance a discrete tre
representation of the front. This strategy and philosophy are maintained in our approa

To summarize, our algorithm allows one to update an interface represented by an i
signed distance function according to a velocity field given on the front in such a v
that the signed distance function is maintained, and the front is never re-initialized. If
chooses to use the adaptive methodologies given in the narrow band approach, occa
rebuilding of the narrow band may be required, but this is performed only sporadically

8 ADALSTEINSSON AND SETHIAN

In order to proceed with the algorithm, we now review some aspects of the Fast Marc
Method and show how it can be used to both construct signed distance functions
extension velocities; this is the subject of the next section.

3. THE FAST MARCHING METHOD

Here, we briefly review the Fast Marching Method for computing the solution to t
eikonal equation; for the details see [17]. The goal is to solve the equation

|Vu| = F(X, y). (6)

The key idea is to build an approximation to the gradient term which correctly deals v
the development of corners and cusps in the evolving solution. It is well-known that
above eikonal equation becomes nondifferentiable, and an appropriate weak solution
be built; this is related to the entropy condition for propagating interfaces introducec
[14]. One of the simplest such upwind entropy-satisfying approximations to the gradiel
due to Godunov and was used, for example, by Rouy and Tourin [12] to solve the eik
equation, namely

1/2

_ 2
max(Djj*u, =Djf*u, 0)"+| e @
= Fj.

max(D;;"u, —D;Yu, 0)?

Additional schemes for solving Hamilton—Jacobi equations may be found in [10, 5].

The central idea behind the Fast Marching Method is to systematically advance the f
in an upwind fashion to produce the solutionThe key idea is the observation that the
upwind difference structure of Eq. (7) means that information propagates “one way,”
is, from smaller values ofl to larger values. Hence, the Fast Marching Method rests ¢
“solving” Eq. (7) by building the solution outward from the smallesalue. The algorithm
is made fast by confining the “building zone” to a narrow band around the front. The i
is to sweep the front ahead in an upwind fashion by considering a set of points in a na
band around the existing front and to march this narrow band forward, freezing the va
of existing points and bringing new ones into the narrow band structure. The key is in
selection ofwhichgrid point in the narrow band to update.

The algorithm is as follows: Put the points into three sE#s; CloseandAcceptedWe
tag points in the initial conditions a&cceptedWe then tag a€loseall points one grid
point away. Finally, we tag asar all other grid points. Then the loop is

1. Begin loop: LefTrial be the point irClosewith the smallest value fau.

2. Move all neighbors ofrial that are inFar into Close

3. Recompute the values afat all neighbors ofTrial that are inCloseaccording to
Eq. (7) by solving the quadratic equation, treating all poinSlvseandFar as if they had
the valuecc.

4. Move the poinfTrial into Accepted

5. Return to top of loop.

This algorithm works because the process of recomputingith@lues at downwind
neighboring points cannot yield a value smaller than any of the accepted points. Thus
can march the solution outward, always selecting the narrow band grid point with minin

FAST CONSTRUCTION OF EXTENSION VELOCITIES 9

FIG. 3. Upwind construction of accepted values.

trial value foru, and readjusting neighbors (see Fig. 3). Another way to look at this is tl
each minimum trial value begins an application of Huyghen'’s principle, and the expanc
wave front touches and updates all others.

The speed of the algorithm comes from a heapsort technique to efficiently locate
smallest element in the s&tial. Let us now perform a quick operation count on the metho
Suppose there are a totalldfcomputational points in a domain, and one wants to solve t|
eikonal equation away from an initial curve or surfathying in this domain. Imagine that
it took no time at all to locate the smallest trial value. Then since each point in the don
is touched only once during the update, the total operation count to construct the soluti
the eikonal equation i® (N). By using heapsort methodology, the smallest such point ¢
be located inO(log N), and hence, the entire method is oréielog N. This is a very fast
algorithm; in most cases lay is very small. We point out that if one wants to produce thi
eikonal solution only very close to the front (one or two points away), one might attemp
iterate the solution is done in [20]. However, beyond a small range around the boundary
", this approach is less computationally efficient than the Fast Marching Method. Since
will use our algorithm to construct extension velocities any distance from the interface,
efficiency of Fast Marching Methods is desirable. For more details, see [17, 18].

4. USING THE FAST MARCHING METHOD TO CONSTRUCT SIGNED
DISTANCES AND EXTENSION VELOCITIES

Recall that given a level set functigii, our goal is to build an extension velociyy: such
that if [V¢| =1, then updating under this extension velocity maintains this unit gradie
The plan is to solve the equation

V™. VFei =0

so thatp®™ is the signed distance function which has the same zero level set as the |
set functionp”. We stress that we do not use this computed signed distance to re-initia
the level set function; it is used only in the constructiorFgf;.

10 ADALSTEINSSON AND SETHIAN

4.1. Constructing Signed Distances

Suppose we are given a level set functigh where the superscriptindicates the time
step in the usual notation, and suppose that this level set function does not correspo
the signed distance function. We can use the Fast Marching Method to compute the si
distancep™™P by solving the eikonal equation

VT =1

on either side of the interface, with the boundary condition That 0 on the zero level set
of ¢. The solutionT will then be our temporary signed distance functig#i™”. The Fast
Marching Method is run separately for grid points outside and inside the front (we n
that determining whether a grid point is inside or outside is immediately apparent from
given level set functiog").

The only difficulty is in the initialization stage of the Fast Marching Method, that i
the computation of the approximate distances of the s€@ia$epoints in order to begin
the Fast Marching Method. We now show how to find the initial seClalsevalues for
grid points outside of a two-dimensional front; points inside the front and points close
three-dimensional surface are handled similarly.

Begin by initially tagging a€losethose grid points where one of the neighbors lies insic
the front. We must assign values at these points to approximate the distances to the
While this can be computed exactly for a smooth front, a faster method can be desit
which only uses the intersection of the front with the grid lines. This is particularly use
when the front is given as the zero level set of a function defined at the grid points ai
smooth representation is not available.

Up to rotation, there are five possible cases that need to be considered and are shc
Fig. 4.

e In Fig. 4a, only one of the neighboring points is on the other side of the front. Here
define the value to be the distare® the intersection point on the line connecting the tw

FIG. 4. All cases for the neighborhood of a point.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 11

grid points. This value is larger than the real distance to the front, but most likely the ve
at the grid point on the other side is the distance to the same point, so that the zero lev
will not have moved after the re-initialization.

e InFig. 4b, two of the neighbors are on the other side of the front. In this case the v:
is defined as the exact distance to the line segment between the two intersection poil
s andt are the distances to the intersection points, the exact distagatsfies

o))

The left-hand side is an upwind approximation to the gradient of the distance funct
since the distance is zero at the intersection points. This suggests what the solution s
be for the remaining three cases and how it should be computed in 3D.

¢ In Fig. 4c, the distance is the positive solution to

d Z o rd\?
I — -] =1
<min(sl,52)> - <t>
e In Fig. 4d, the distance is

d = min(s, &).

e In Fig. 4e, the distance is the positive solution to

d 2 d 2
min(s;, S) min(ty, t)

4.2. Constructing the Velocity Extensiong,

Our goal now is to extend a speed function given along an interface to grid points arc
the front. This extension should extend the speed in a continuous manner and avo
possible, the introduction of any discontinuities in the speed close to the front. Thus.
want to construct a speed functi®g,; that satisfies the equation

VFex - Vo™ = 0.

The basic idea is to march outwards according to the Fast Marching Method perspec
systematically and simultaneously attaching two values to each grid point, the dist:
from the front, and the extended speed value. We first compute the signed digttce
to the front using the Fast Marching Method, as described in the previous section. A:s
Fast Marching Method constructs the signed distance at each grid point, we simult
ously update the speed valilg,; according to Eq. (5). In the gradient stencil, we onl
use neighboring points closer to the front to maintain the upwind ordering of the pc
construction.

In more detail, and similar to the construction of signed distances, we need first to
the speed values for the inital set@fosepoints in order to begin the technique, and the
second, to update the extension value when the distance value is updated according
above equation.

One technique for building extension velocities near the front would be to copy the s
of the closest grid point, as was described earlier. Instead, we take a weighted avera

12 ADALSTEINSSON AND SETHIAN

the speed values at the points which are used in computing the distance, where the wei
proportional to one over the square of the distance. This is equivalent to solving the equi
VFext- Vo™ =0

As an example, consider the cases in Fig. 4. For simplicity, assume that we are comp
the extension value for the poifit j) in the center.

e For Fig. 4a, the extension speedfis= f (i, j — s).
e For Fig. 4b, the gradient is given by

dd
t’s)’
The equationV Fey; - V@™ = 0 is

f—f(l—l—tj) f—1f@,j—9 d d
o= (- AEER) ()
d

{f—f(|+t j) f—f(i,j—s)}

t2 s2

in which case

A/t F0 +t,)+ QD f, j—S)
1/t2+1/s2

f=

This equation indicates the solution for the remaining cases and for the three-dimens
case. Our expression assumes that the speed of the interface is given at the inters
points of the interface with the grid lines. If the speed is given at other points, one can ei
use interpolation to get the speed values, or modify the above algorithm.

e For Fig. 4c, the equation is

A/t F0 +t,)+ @Q/s?) 6, j+9)

f =
1/t2+1/s? ’

wheres=g, if || < |$[; otherwises=s,.
e For Fig. 4d, the equation is

f=fG j+s9),

wheres is chosen as in the term before.
e For Fig. 4e, the equation is

@/t +t,) +@/s?fd, j+59)
1/t2+1/s?

f =

wheres andt are chosen between the entry frés, s;} and{t, to} which are smaller in
absolute value.

Once values for both the signed distance and the extension function are establish
Closepoints, we need only update extension values. As the distance value is updated |
the Fast Marching Method, a new extension value is chosen suck gt Vo™P=0,

FAST CONSTRUCTION OF EXTENSION VELOCITIES 13

where the gradient dfe, and¢'®™P are calculated using the points that contributed in th
update ofg. If no points from a grid direction are used, the corresponding componen
the gradient is zero.

As an example, consider the case shown in Fig. 4b. Here the new distance @lyé at
is found by solving Eq. (7). Assuming thét+ 1, j) and(i, j — 1) are the points that are
used in updating the distanceyifs the new extension value, it then has to satisfy an upwir
version of Eq. (5), namely

¢itinfﬂ—¢it,ejmp ¢itimp—¢itin1p1 (Fei—v v—FRij —0
h ’ h h ’ h e

Since(i +1, j) and(i, j — 1) have been accepte#, is defined at those points, and this
equation can be solved with respecttto produce

. /,temp temp » temp temp
v Fivnj(oij =) + Fija(o™ — 1)
= temp temp temp temp
(¢i,j —¢i+1,j) + (¢’i,j —¢i,j—1)

This means that, at the end ey - Vo'®™P= 0 is satisfied for all points on the grid, except
the points along the front itself. At those points, the previous construction will make
equation satisfied when the gradient approximation is computed using points on the
as mentioned before.

Finally, we point out that our technique allows one to extend either the normal sp
function F or an advective component velocity figld, v) by extending each component
separately.

5. NUMERICAL TESTS

In this section, we perform a series of numerical tests to analyze this extension cons
tion. These tests are design to analyze the following:

e How much time does it take to construct these extension velocities?
o How well do extension velocities constructed by our method maintain the sigt
distance function?

o Are there any special difficulties in three dimensions, in executing topological char
or in extending speed laws depending on second-order effects (such as curvature mo
e What is the advantage of using this technique in problems with subgrid effects?

e Does the algorithm allow adequate construction of off-front speeds in the case w
there is no natural extension and the front motion is highly complex, such as those
result from visibility issues, angle-dependent ion-milling flux functions, etc.)?

By way of description, we call the technique in this paper the “extension” method, wt
defining the “no extension” method to be the one which one uses a velocity defined
available at each particular level set. Also, we shall distinguish between the narrow |
method which limits computation to the narrow band versus the full matrix method, wh
operates on the entire computational domain. We now proceed to provide data to an
these questions.

14 ADALSTEINSSON AND SETHIAN

an

FIG.5. Constructing extension velocities.

5.1. Accuracy and Timings

We begin with a straightforward accuracy and timings check (we shall return to a m
precise check in the next section). We begin with a pure advection problem of translati
circle with velocity(u, v) = (2, 3). The circle has radius 10, centered at (20, 20) in a box [
60], [0, 60] (on a 61x 61 grid). While somewhat unnatural, we recast this problem as o
of front moving normal to itself with speed in the normal direction giverFoy i - (2, 3),
wheren is the normal to the front. We note that at each grid point we need the nort
speed of the front and use a second-order upwind scheme to advect the front. For the
extension” method, we calculate the normal at every grid point by evalusiingV¢|,
and the normal speed is then the inner product of the normal and the vector (2, 3). Fo
“extension” method, we begin by finding the points where the front intersects the grid lir
We then calculate the normal at those points usingthanction and take the inner product
with (2, 3) to find the speed of the front at those points. We then extend the speed ont
grid points.

We first compare the accuracy of the two methods. The two different methods are in
agreement, even for a relatively coarse grid. The differences are so small that comp
the areas of the circles is not a useful measure. In Fig. 5 we show the level of agree
by zooming in on a portion of the circle and by comparing the two computed solution:
the analytical solution. The numerical solutions almost overlap completely; the accul
difference between extending or not extending the speed function is far less significant
the numerical error inherent in the space and time discretization of the derivative opera

Table | compares the execution speeds. We show the total execution time it take
advect the circle between two corners of the square. We vary the grid size and compat

TABLE |
Simple Advection with Velocity (2, 3)

Narrow band Full method
Grid size Extension No extension Extension No extension
60 lessthanls lessthanls 3s lessthanls
120 5s 2s 22s 12s
240 30 9 180 96

600 450 94 3500 1600

FAST CONSTRUCTION OF EXTENSION VELOCITIES 15

No extension Using extension velocity

FIG. 6. Motion under elongation speed function: the small dotted circle in each figure is the initial front. T
larger dark circle and the neighboring level curves are computed at tn@e633.

execution times both for the narrow band approach and the full level set method. These
are on Sun Sparc II.

These results show that the execution time for the extension problem is roughly t
to four times slower than the direct method. It has worse scaling, which is to be expe
since the cost of extending the speedtarid points isO(M log(M)). However, we note
an important fact; it costs almost nothing to evaluate the speed function in this exampl
problems where calculation of the speed functioitgslf time-consuming (for example,
in the evaluation of a boundary integral to determine the speed function), minimizing
number of points at which this must be performed leads to significant speedup. As soc
the cost of computing the speed at the grid points is more @dog(M)), the extension
technique becomes competitive and, in fact, can be faster than the direct method.

The above was designed to show a simulation in which the motion is obvious. A ir
detailed timing run is as follows. We use a circle with center (10, 6), radius 3, in a box v
bounding coordinates [0, 20], [0, 20]. The speed function is chosérasy) = axy + b,
wherea andb are chosen so thdt(x, 2) = 1.0 andF (x, 10) = 10.0. Thus, the motion is
one which elongates the circle as it propagates outwards. The calculation is performe
a 101x 101 grid. In Fig. 6, we show the results of this calculation. On the left, we sh
the initial front, together with the front at tim& = 0.633 and the other level sets. The
initial front is the small dotted circle, while the front at a later time is shown as a d:
curve. This calculation is performed without using any extension velocities; the pised
taken directly from the analytic function given above. On the right, the same calculatio
repeated using the extension velocity calculated using our algorithm. The figure on the
shows distortion of the neighboring level sets, while the one calculated using our exten
velocity algorithm maintains nicely the signed distance function, as seen by the ev
spaced level sets.

In the previous example, we provided timing results for the extension method versu:s
nonextension method. Here, we provide detailed timing measurements and show ho
time required to build our extension velocity depends on the number of grid points wt
one wants values. In Fig. 7, we show timings on a 350 MHz 604e-PowerPC proce:
As the grid is refined, there are more points on the front, and hence, the extension |
longer. We show results for various widths of the narrow band, and then finally for the “fi

16

ADALSTEINSSON AND SETHIAN

1002100 gnid 3002300 grid
Tube Width || # Points in Domain | Time || # Points in Domain | Time
7 cells 1500 8.8ms 4740 52ms
11 cells 2340 11.7ms 7660 66ms
15 cells 3124 14.8ms 10604 80ms
21 cells 4144 18.5ms 14780 100ms
Full Domain 10000 39ms 90000 475ms

FIG. 7. Timings table for elongation flow.

method in which we construct extension velocities at all grid points in the full computatio
domain. As expected, the timings go up as the number of grid points increase; the inci
is essentially linear, since the lIdgterm is almost one for these values.

5.2. Maintaining the Signed Distance Function

Next, we verify that our algorithm constructs an extension velocity which maintains
signed distance function, assuming one starts from initial data which itself has the proy
that |[Vo (X, y,t = 0)| = 1. We consider two separate problems, each designed to ca
significant shearing, stretching, and compression of the neighboring level set function

First, we consider a speed function of the form

F =2(R— 3.0+ 2))sin(4d) + 2

whereR = (x? 4+ y?)¥/2, 9 is the angle made between the veatory) and the positivex
axis, andt is the time. Here, the initial circle is centered at the origin with radius 3. Tl
calculation is performed on a 164101 grid. We show the initial level set function (Fig. 8a),
the results at time= 0.8 using the given velocity field (“no extension”) (Fig. 8b), and the re
sults using our extension velocity in (Fig. 8c). The use of the given velocity causes the |
sets neighboring the zero level set (shown as a dark line) to wildly diverge, while using
extension velocity causes the level sets to remain equally spaced and to conform wit
zero level set. The exact solution to this problem, which can be seen from the velocity fi
is a circle with radius given at timeby (3+ 2t), which matches our computed solution.

/

Initial Front and level sets Level Sets using Given F Level Sets using Extension Velocity
a b c

FIG. 8. Effect of no-extension and extension velocities on neighboring level sets: there is no reinitializa
of the level set function at any time.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 17

\&—
D\

a: Initial shape b: No Extension, t=.45 ¢: No Extension, t=.90

o
&

()

/7

=

d: Initial shape e: Extension, t=.45 f: Extension, t=.90

FIG. 9. Effect of no-extension and extension velocities on neighboring level sets: there is no reinitializa
of the level set function at any time.

We now repeat this calculation for another example and provide a quantitative mea:
ment for the error involved. This time, we use a velocity field of the form

F = ((R—3)?+ 1)(2+ sin(49)).

The calculation is performed on a 481401 grid. We start with the same initial data a:
given in Fig. 9a. This velocity field produces significant distortions in the front. In Fig.
we show the front at timé=0.45 andt =0.90 both without the extension and with our
extension velocity. It is clear that the extension velocity preserves the initial property
the signed distance velocity, namelj¢| = 1, as can be seen by the equal spacing of tt
neighboring level sets.

Next, we analyze the error as a function of mesh size in the computed solution. W
this as follows. We assume that the finest calculation on a<88@0 grid of the extension
velocity is the correct reference solution (for both first- and second-order methods),
we compute the signed distance function from that zero level set at t#a@90. We do
this as follows. We take the points on the reference path and for each point we calc
the minimum distance to the path we want to compare it to. This gives a list of distar
which are then used for the norm evaluations for thg, L1, and L errors. The calcu-
lation is made on a physical box of siz20 x 20). The results are shown in Fig. 10 for
first- and second-order spatial methods. As expected, the error in the computed solutic
the interface using the extension velocity is considerably better than that computed t
the no-extension solution. Also, for a second order spatial method, the extension sol
is second order while the no-extension solution is first order.

18 ADALSTEINSSON AND SETHIAN

1 First Order Il Second Order
No extension Extension ||| No extension Extension
Grd || Iw I Iz Io | In I; || s | In I, Too I I,
507 .00818 | .00356 | .00418 |[.00732 | .00329 | .00402 [[| .00365 | .00138 |{ .00163 | .00279 | .00107 | .00138
1007 || .00434 | .00185 | .00219 || .00327 | .00136 | .00171 [[| .00103 | .00042 | .00049 [} .00075 | .00027 | .00036
2002 ||| 00211 | 00090 | .00111 || .00137 [.00056 | .00071 H .00039 | .00016 | .00019 || .00019 | .00006 | .00009
400%]| 0011 .00047 | .00059 [[.00045 | .00018 | .00023 [|| .00025 | .00008 [.00011 [[.00004 [0.00001 | .00002

FIG. 10. Error analysis for no-extension and extension calculations.

5.3. Three Dimensions and Topological Change

Next, we show how to apply the extension techniques to three-dimensional probl
undergoing topological change. A good prototype problem is the collapse of a dumkb
under mean curvature; as shown in [15], level set methods naturally track the topoloc
change that occurs at the narrowing of the handle. Here, we extend the mean curvature-
speed function from the interface itself using the Fast Marching technique to the neighbc
grid points, and then update the level set function. The results are shown in Fig. 11. Sir
to the above example, we built a level set finder to construct nodal points at the triang
representation of the zero level set, evaluated the curvature at these nodal points (by bi
interpolation from the mean curvature evaluated at the mesh grid points using standard
set methodology), and then extended this curvature field to the narrow band. We stres:
in the case of such a geometric speed law, it is far more natural to construct a speed fur
at each grid point directly from the level set passing through that point, rather thar
develop the extension construction. However, we include this example to demonstrat
applicability of our technique to sensitive three-dimensional problems involving higl
order derivatives (such as curvature), which can often be required in complex exam
such as three-dimensional etching/deposition simulations which include surface diffus
visibility, and re-emission/re-deposition.

@9 o©
Q@

FIG. 11. Extension velocity solution of collapse of dumbbell under mean curvature.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 19

5.4. Subgrid Accuracy

Next, we study subgrid accuracy. There is another significant class of problems in w
there is substantial benefit in using the speed extension rather than the natural speed
grid points. As an illustration, consider a problem in which there is a dramatic range
speed values within a narrow spatial range. We take a domain in which the speed i
normal direction is 1, except in a thin annulus of width-two grid cells where the spee
100. As a practical motivation one might consider an etching problem in which a very
band of easily etched materials lies embedded within a material with much slower etch
We start with an initial front that intersects the circle and advect the front according to
given speed function. We note the difference between the extension and the direct appr

e ExtensionThe speed at any point on the front can be calculated precisely by checl
if it is inside this annulus or not. This speed is then extended onto the surrounding
points. This leads to a more accurate detection of the front location and the accompat
etch rate; the existence of the thin fast etch region is noted as the front passes throug

o Direct (No extension)ere, speeds are defined only in terms of the value of the e
function at each grid point. Thus, if grid points near the annulus are used, they may prc
speed values which do not accurately reflect the local etch rate at the interface itself.

The results of the simulations for a 30 by 30 grid are shown in Fig. 12. On the I
the direct solution method is shown; on the right, the extension technique is used.
underlying grid is indicated by the dotted lines. On the left side, considerable jagged:
occurs, since the effective speed of the front at each point will be an average of the spe
the surrounding grid points. A much smoother and correct evolving profile is obtained u:
the extension technique shown in the figures on the right. We note that merger is har
easily; as the two fronts come close together the construction of extension velocities w
well, and the merger occurs as expected.

5.5. Complex Problems without Natural Speed Definitions

Finally, we apply these extension techniques to problems in which there is no nat
definition of the speed off of the evolving interface, and extension is necessary in orde
build an appropriate velocity embedding.

As an illustration, we consider aspects of etching and deposition in semi-condu
manufacturing; see [4] for further discussion. Briefly, a typical problem involves a frc
which is under bombardment from particles, some of which stick and the rest bounce
the front and hit other parts of the surface. These re-emitted particles again have a ce
probability of sticking; the fractioj of particles that attach themselves during any particul:
collision is known as the sticking coefficient.l? is the material strength that arrives at the
front, the strength at which material stickts, is given by the integral equation

1500 = B1°00) + (1 — B) / Flux(x,)l s(y)M(x. y) dy

(see [4]), where Flug, y) depends on the distance betweeandy, and the mask function
M(x, y) will be O or 1, depending on whethgrandy are visible from one another. Dis-
cretizing this equation leads to the matrix equation

ls=B1°+ (1 - p)Qls,

20

ADALSTEINSSON AND SETHIAN

FIG. 12. Left=no extension; right extension, beginning.

FAST CONSTRUCTION OF EXTENSION VELOCITIES 21

FIG. 13. Upwind construction of accepted values.

wherels andl © are the total and incoming strength at points on the front Sargla square
matrix.

Our technique to construct these extension velocities is as follows. First, in either tw
three space dimensions, we use a contour finder to find points where the front correspol
tothe zerolevel setintersects grid lines. This produces a set of nodal points, each repres:
an area (either aline segment in two dimensions or a triangular element in three dimensi
The values of the flux at each of these nodal points are unknowns in a matrix versio
the above integral equation. This matrix equation is solved through an iterative techn
with an accompanying recursion relation (see [4]) which provides the velocity at each n
point. We then use these velocities as the basis for starting the Fast Marching Methoc
then construct extension velocities in the rest of the narrow band.

Itis awkward to find a natural meaning for this velocity expression at each level set, si
it is physically meaningless. Since the majority of the time is spend setting up and sol
the matrix equation, the time it takes to extend the speed to neighboring grid points u
the Fast Marching Method is of little consequence.

In Fig. 13 the incoming light distribution is proportional to @), whered is the angle
from the vertical. The sticking coefficientis 0.5, and the grid was 160 by 100. The execu
time was about 1 min. The deposition on the ceiling of the cave-like structure is due sc
to the effects of the redeposition.

5.6. Summary

We have described an algorithm based on the Fast Marching Method for construc
extension velocities for use in level set calculations. The approach constructs an exte
velocity in O(N log N) time, whereN is the total number of points where one wants th
extension. This extension velocity moves the zero level set with a velocity which is gi
on the front, preserves the signed distance function without need for re-initialization,
provides subgrid accuracy in some certain cases.

ACKNOWLEDGMENTS

All calculations were performed at the University of California at Berkeley and the Lawrence Berkeley La
ratory. We would like to thank D. Chopp for helpful discussions.

22 ADALSTEINSSON AND SETHIAN

REFERENCES

. D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating intedfaCesput. PhysL18,
269 (1995).

. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition,
lithography I: Two-dimensional simulationd, Comput. Physl2((1), 128 (1995).

. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition,
lithography II: Three-dimensional simulatiors,Comput. Physl222), 348 (1995).

. D. Adalsteinsson and J. A. Sethian, A level set approach to a unified model for etching, deposition,
lithography Ill: Re-deposition, re-emission, surface diffusion, and complex simulatio@mput. Phys.
138(1), 193 (1997).

. T. J. Barth and J. A. Sethian, Numerical schemes for the Hamilton—Jacobi and level set equations c
angulated domaing, Comput. Physl45 1 (1998).

. Y. C.Chang, T. Y. Hou, B. Merriman, and S. J. Osher, A level set Formulation of Eulerian interface captu
methods for incompressible fluid flowd, Comput. Physl24, 449 (1996).

. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan prob
J. Comput. Physl38 8 (1997).

8. D. L. Chopp, Computing minimal surfaces via level set curvature flo@omput. Physl06, 77 (1993).

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

20.

. R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation: A level set appro:
IEEE Trans. Pattern Anal. Mach. IntelL7(2), (1995).

S. Osherand J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Har
Jacobi formulation). Comput. Phys79, 12 (1988).

E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-sh&glilyl. J. Numer. AnaR9(3),
867 (1992).

J. A. SethianAn Analysis of Flame Propagatiofh.D. dissertation, Mathematics, University of California,
Berkeley, 1982.

J. A. Sethian, Curvature and the evolution of fro@smmun. Math. Phy4.01, 487 (1985).

J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton—Jacobi equations and consen
laws, J. Diff. Geom.31, 131 (1990).

J. A. Sethian, Numerical methods for propagating frontganmational Methods for Free Surface Interfaces
edited by P. Concus and R. Finn (Springer-Verlag, New Work, 1987).

J. A. Sethian, A fast marching level set method for monotonically advancing fRyots,Nat. Acad. ScB3,

4 (1996).

J. A. Sethianl.evel Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision ¢
Material SciencdCambridge Univ. Press, Cambridge, 1996).

J. A. Sethian and J. D. Strain, Crystal growth and dendritic solidificatid@®omput. Phy98, 231 (1992).

M. Sussman, P. Smereka, and S. J. Osher, A level set method for computing solutions to incompre
two-phase flowJ. Comput. Physl14, 146 (1994).

H-K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase mo
J. Comput. Physl27, 179 (1996).

	1. INTRODUCTION
	FIG. 1.

	2. CONSTRUCTION OF EXTENSION VELOCITIES: PREVIOUS WORK
	FIG. 2.

	3. THE FAST MARCHING METHOD
	FIG. 3.

	4. USING THE FAST MARCHING METHOD TO CONSTRUCT SIGNED
DISTANCES AND EXTENSION VELOCITIES
	FIG. 4.

	5. NUMERICAL TESTS
	FIG. 5.
	TABLE I
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	ACKNOWLEDGMENTS
	REFERENCES

